Deep Learning for Optimization

*  Many computationally challenging optimization problems
are solved repeatedly under different scenarios. Plenty of
data is generated.

* Benefit from fast and accurate approximations.

* Deep learning solutions are particularly appealing to
approximate the solution of these optimization problems.

* |Issue: Presence of hard physical and engineering
constraints.
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»  Ohm’s and Kirchhoff laws in power systems, \/\/eymouth
eqguations, in Gas networks, and the Navier-Stoke’s
eqguations for shallow water in flood mitigation.

* Goal: How to enable a deep learning model to take
account of these constraints in its predictions!
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Deep Constrained Learning
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Deep Constrained Learning

Constraints violations
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How does it works in Practice?

AC Optimal Power Flow Predictions

Solution Quality

Dist. to load flow sol. (%

Test Case M~
30 ieee pg 2.6972 2.0793 0.0007
v 1.2929 83.138 0.0037
118 ieee pg 0.2011 0.1071 0.0038
B v 1.9971 3.4391 0.0866
300.icee pg 0.1336 0.0447 0.0084
B v 3.8526 31.698 0.1994
p2 [[0.7751 | 0.9843 [0.0197
v 24284 | 36.288 0.1995

otal Average

Objective cost distance and runtime

Dist. to AC-OPF cost

% Runtime (sec.)

< 104

0.4207 0.0785 0.0001
8.0645 0.2662 0.0001

1x

Test Case M~
30_ieee 79894 29447 0.0180 | 0.1024 0.0148
118 _ieee 4.7455 1.0973 0.5408
300_ieee 4.7508 1.9543 0.3011
45733 | 2.3706 10.2124
Total Average

M: Al-based model

Min Speedup

AC: full non-linear model

DC: linear approximation
(as used in industry)

Summary: Al-based model can predict quantities several order
of magnitude more accurately and faster than the linear (DC)

approximation (and a baseline learning model M ™) and reports
significantly less constraint violations.

. Fioretto et al. AAAI-20

~. Chatzos et al. ArXiv-20
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Solution trajectories can be approximated by
piecewise linear functions.

VWhen many varia
highly accurate ap

RelLlU neural networks have the ability to capture
biecewise linear functions.

bles have “simple” solution trajectories,

broximations can be obtainead.

Thm (informal). The approximation error of a RelLU network
depends on the trajectory complexity (number of pieces and
their total variations) and the network capacity.

capacity.

Dependency between complexity of the trajectories and
brediction error, in some contexts, regardless of the model

j Kotary et al.

s Dinh et al. ArXiv-22

Why does it work?
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Why does it work?

The importance of modeling constraints

* Introducing constraints using Lagrangian-based

penalties is not a regularization term.

* |t helps the model accurately learn dif

‘erent

nidden features, i.e., to more accurate

y capture

the dependencies across variables and their

outputs.
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Privacy and Security Concerns

O(D) = argmin f(x, D)
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» Privacy regulations min ; \D — D|?
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Opportunities and Challenges

Robustness guarantees about the solutions generated.

Integration of physics simulators in the loop.

Scalability and data availability.

| ack of theoretical results.

Thank You

nandofioretto.com @ O twitter.com/nandofioretto

nandofioretto@gmail.com < @ github.com/nandofioretto



